

Towards Fault-tolerant Design of Quaternary Quantum Arithmetic

Yuchen Zhu, Ruixuan Yang, Yuhang Gu, Fangtian Gu, Lingyi Kong, and He Li*

helix@seu.edu.cn

Heterogeneous Intelligent and Quantum Computing (HIQC) Lab School of Electronic Science & Engineering Southeast University, Nanjing, China

20 Aug. 2024

Quaternary Mapping Method

Q²FA Design Strategy

Quaternary Mapping Method

Q²FA Design Strategy

Fast-growing of Quantum Computers

- Variational Quantum Eigensolver (VQE) for quantum chemistry
- Hybrid quantum-classical optimization algorithms \checkmark

Limitations on Fixed Computation Radix

- Unable to discriminate multiphase shift X
- Limited space for Quantum Error Correction (QEC) X
- Fail to support problem-tailored encodings X

Our Work

Our Work

- A mapping method to realize arbitrary quaternary gates on binary circuits and simplify certain operations
- Novel designs of quaternary quantum full adders (Q²FAs), from basic structure to circuits with optimized metrics
- Fault-tolerance analysis of proposed Q²FA designs and highlight the effectiveness of our design

Quaternary Mapping Method

Q²FA Design Strategy

Quaternary Mapping

- Quaternary operations based on Galois Field (GF) to ensure reversibility
- Examples of quaternary operations: $Z(03) = 2A^2 + 3$, $Z(0321) = 3A^2 + 3$, $Z(23) = A^2$
- Quaternary Mapping: $|0\rangle \rightarrow |00\rangle, |1\rangle \rightarrow |01\rangle,$ $|2\rangle \rightarrow |10\rangle, |3\rangle \rightarrow |11\rangle$

Tab 1: Truth Table of GF(4) Arithmetic.

\oplus	$ 1\rangle$	$ 2\rangle$	$ 3\rangle$	0	$ 1\rangle$	$ 2\rangle$	$ 3\rangle$
$ 0\rangle$	$ 1\rangle$	$ 2\rangle$	$ 3\rangle$	$ 0 \rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
$ 1\rangle$	$ 0\rangle$	$ 3\rangle$	$ 2\rangle$	$ 1\rangle$	$ 1\rangle$	$ 2\rangle$	$ 3\rangle$
$ 2\rangle$	$ 3\rangle$	$ 0\rangle$	$ 1\rangle$	$ 2\rangle$	$ 2\rangle$	$ 3\rangle$	$ 1\rangle$
$ 3\rangle$	$ 2\rangle$	$ 1\rangle$	$ 0\rangle$	$ 3\rangle$	$ 3\rangle$	$ 1\rangle$	$ 2\rangle$

Quaternary Mapping

Fig 2: Z(03), Z(0321), and Z(23) Gates after Mapping

Feasible for large-scale quantum computers with simplified operations

Fig 3: Common approach to quaternary CX and simplified operation

Quaternary Mapping Method

Q²FA Design Strategy

From QFA to Q²FA

Logic Optimization

Fig 6: Logical optimized half adder

When either of the inputs is in $|3\rangle$, the carry is most likely to be $|1\rangle$. Additional circuits are applied for the rest of the cases.

Consume 8 qubits, 10 2CX gates, 4 3CX gates, 4 4CX gates, and 2 5CX gates.

Fault-tolerant Design of Q^2 FA

Superposition Inspired Design

Fig 9: Q²FA-3

Empirically, the green parts satisfy most of the cases. The rest of the cases are handled by the purple parts.

For Q²FA-3, an additional qubit is required to store the intermediate carry result.

Consume 9 qubits, 9 2CZX gates, 6 3CZX gates, 5 4CZX gates, and 1 5CZX gates.

Quaternary Mapping Method

Q²FA Design Strategy

Evaluation Method

Metrics

- Qubit consumption Most important metric for NISQ era
- 2 T-count

Nonclifford gates are the most expensive gates which can be represented by T-count and is closely related with multi-controlled gates

3 T-depth

Number of layers of T gates, which is crucial because of the limited relaxation time (T_1) and dephasing time (T_2)

Method

Classical emulation + Hardware implementation

Fig 10: Evaluation method

Evaluation result

Туре	Qubits (Garbage)	х	СХ	2CX	Gat 3CX	es 4CX	5CX	T-count
Q ² FA-1 Q ² FA-2 Q ² FA-3	8(4) 8(4) 9(5)	28 12 12	0 0 7	6 10 9	4 4 6	12 4 5	3 2 1	483 292 303
		х	Circuit depth X CX 2CX 3CX 4CX 5CX T-d					
		19 8 8	0 0 7	6 10 9	4 4 5	12 4 5	3 2 1	93 68 67

Tab 2: Comparison of various Q²FAs.

Analysis

- Q²FAs follow the same design strategy, i.e., from half adder to full adder
- Q²FA-2 generally utilizes fewer gates than the other two, owing to the optimization of the carry propagation path
- Q²FA-3 has the lowest T-depth, which is attributed to replacing multi-controlled X gates with multi-controlled ZX gates.

Evaluation result

QFA Type	Qubits	Gates						T
	(Garbage)	X	UX	20.8	30X	40 X	50X	1-count
Q ² FA-1	6 <i>p</i> +2(4 <i>p</i>)	28 p	0	6 <i>p</i>	4 <i>p</i>	12 <i>p</i>	3 p	483 <i>p</i>
Q ² FA-2	6 <i>p</i> +2(4 <i>p</i>)	12p	0	10 <i>p</i>	4p	4p	2p	292 <i>p</i>
Q^2FA-3	7 <i>p</i> +2(5 <i>p</i>)	12p	7 <i>p</i>	9p	6 <i>p</i>	5p	1p	303 <i>p</i>
		Circuit depth						
		Х	CX	2CX	3CX	4CX	5CX	T-depth
		19 <i>p</i>	0	6 <i>p</i>	4 <i>p</i>	12 <i>p</i>	3p	93 <i>p</i>
		$8\bar{p}$	0	10 <i>p</i>	4p	4p	2p	68p
		8p	1p	9p	5p	5p	1 <i>p</i>	67 <i>p</i>

Tab 3: Comparison of various Q²CRAs.

Fig 11: Schematic of quanternary quantum carry-ripple adder (Q²CRA)

Carry-ripple adders, as one of the most classical least-significant digit-first (LSDF) arithmetic operators, are composed of an array of FAs. Implemented with Q^2 FA-2, Q^2 CRAs exhibit a significant advantages of circuit depth compared to the design with Q^2 FA-1.

Fault-tolerant Evaluation

Fig 12: Fault-tolerant performance of Q²FAs

- Setup: All results are obtained under the configuration of *ibm_brisbane*
- Performance: Q²FA-2 exhibits a 1.2x higher result accuracy and a 1.5x lower number of error types
- Analysis: Q²FA-3 shows a worse fidelity in contrary to the metrics, which is attributed to the basis gates and the mismatch between T₁ and T₂

Effectiveness of Optimization

Fig 13: Relationship between optimization level of the compiler and the transpiled circuit depth.

- Setup: Qiskit compiler is adopted to optimize the circuit under various optimization levels
- Performance: the circuit depth decreases with the optimization level, along with an enormous increase in compilation time (denoted as the area of each point)

Thanks for Listening.